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Abstract 

The precision of the numer ica l  algori thms used to 
integrate the Takag i -Taup in  equations has been in 
the past a severe l imitat ion for the s imulat ion of  
accurate topographs.  The intensity, especially in the 
direct image of  the defect, is underest imated.  This 
has forb idden the use of  the reciprocity theorem for 
the s imula t ion  of  traverse and white-beam syn- 
chrotron topographs.  A new algori thm is described,  
based on two different methods of expressing the 
partial-derivative equations,  which permits a faster 
and more accurate calculation. 

I. Introduction 

X-ray topography is a widespread method for single- 
crystal characterization.  Computer  s imulat ion of  
topographs  is useful for image interpretat ion because 
it allows quanti tat ive analysis  of  the perfection of  
crystals. The compar ison  between the computed and 
the exper imenta l  images makes it possible to test the 
validi ty of  a deformat ion  model  for the defects seen 
in the image and to determine quanti tat ively param- 
eters that are not accessible through the exper iment  
such as the sign and magni tude  of  the Burgers vector 
of  a dis locat ion or the nature of  a stacking fault. 
Simulat ion of  section topographs is now well estab- 
l ished (Epelboin,  1985). As for traverse topographs,  
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Petrashen, Chukovski i  & Shulpina  (1980) have 
at tempted to calculate the intensity along a line of  
the image and Epelboin & Soyer (1985) have simu- 
lated whole images. The latter have shown that the 
precision of  the algori thms was not sufficient for the 
reciprocity theorem of  optics to be used as suggested 
by Petrashen (1976). 

Three aspects must be considered when comput ing 
X-ray topographs:  

(i) the kind of  wave incident  on the surface of  
the crystal; 

(ii) the numerical  method to solve the propagat ion 
equations inside the crystal; 

(iii) the network of  integration used to integrate 
these equations.  

Let us briefly review each of  them. X-ray topogra- 
phy may be classified into two groups: plane-wave 
and spherical-wave topography.  Laboratory and syn- 
chrotron-radiat ion sources produce spherical  waves 
(Aristov, Kohn,  Polovinkina & Snigirev, 1982; 
Carvalho & Epelboin,  1990), so that to obtain a p lane 
wave it is necessary to put a specially designed mono- 
chromator  in front of  the specimen.  Petrashen et al. 
(1980) expla ined  why the most efficient method to 
simulate plane-wave topographs is the Tournarie  
method (Authier,  Malgrange & Tournarie,  1968). 
Thus, in this paper  we will study only the case of the 
spherical  wave, i.e. section and traverse topographs.  
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The contrast may be explained as the addition of the 
intensities produced by independent point sources 
distributed along the entrance surface of the crystal 
(Aristov et al., 1982). This is also true for synchrotron 
topography, in spite of the usually large source-to- 
crystal distance (Carvalho & Epelboin, 1990). The 
reason for this is the small coherence length of the 
incident radiation. X-rays produced by a point source 
propagate in the crystal inside the Borrmann triangle. 
This means that the simulation of section, traverse or 
synchrotron topographs consists mainly in the calcu- 
lation of the X-ray field inside the Borrmann fan 
along a network of integration (Fig. 1). 
• Three numerical methods have so far been used 
for this calculation. Petrashen (1976) proposed a 
method to calculate the diffracted field only. In this 
method, it is necessary to evaluate exp (i27rh. u) at 
each step of the computation, where h is the 
reciprocal-lattice vector and u is the displacement due 
to the deformation at a given point inside the crystal. 
The evaluation of a complex exponential takes a long 
time and it dramatically slows down the integration 
process. Epelboin (1981) and Epelboin & Soyer 
(1985) used a method established by Tournarie 
(Authier et al., 1968) to simulate section and traverse 
topographs. This method has the advantage of 
evaluating a derivative of h • u instead of the complex 
exponential, which is much faster. However, both the 
diffracted and the transmitted fields must be calcu- 
lated at each node of the network. This feature un- 
necessarily increases the number of arithmetic 
operations. If either the diffracted or the reflected 
field is known, the other is available by a simple 
calculation by means of one of the Takagi-Taupin 
equations (Takagi, 1969). Taupin (1967) used another 
method, which should give better precision. However, 
it is necessary to evaluate the deformation at several 
nodes for each step of integration and this requires 
a greater number of arithmetic operations. As a con- 
sequence, Nourtier & Taupin (1981) found that this 
method is slower, for a given precision, than the 
Tournarie method. 

O 

Sh 

Fig. 1. Principle of the network of  integration. O: point source 
along the entrance surface of  the crystal; So and s h are the 
refracted and reflected directions, respectively. 1, 2, 3, 4 are four 
nodes of  the network, which define a cell of integration. 

Another aspect of the simulation procedure is the 
choice of the network of integration. Epelboin (1981 ) 
suggested an algorithm for its construction based on 
the width of the extinction fringes for a perfect crystal. 
Since the established network is often not dense 
enough in the most deformed areas, he used a pro- 
cedure valid only for dislocations, which decreases 
the integration steps in the region around the direct 
image of the dislocation. Up to now, no general 
algorithm of refinement of the integration network, 
applicable to any kind of deformation, has been 
proposed. 

In this paper, we present a new method to calculate 
the diffracted field. It is faster because it combines 
the advantages of both previous methods. We first 
explain its basic principles and then discuss its appli- 
cation to the computation of the diffracted intensity. 
In the last section, we present a new method to refine 
the integration network that may be applied to any 
kind of deformation and not only to dislocations. 

In a second paper (Carvalho & Epelboin, 1993), 
we will explain the use of this algorithm for the 
simulation of traverse and synchrotron topographs. 
Since its precision is better than the previous ones, 
it allows the use of the reciprocity theorem and this 
reduces the computation time. 

II. The diffraction equations 

As previously explained, we are interested in the 
computation of the.diffracted amplitude Dh(r) only, 
since the refracted intensity may be deduced from its 
value. It may be written as (Takagi, 1969) 

Dh(r) = ~( r )  exp [+i2zrh.  u(r)] 

x exp [- i27r(ko+ h) • r], 

where r is the position vector of a point in the crystal 
and ko is the direction of the incident wave. Since 
Takagi's equations give the freedom to choose the 
extremity of the incident wave vector, we choose ko 
so that [ko[ = [ko+h[. The equation that describes the 
amplitude in the crystal becomes (Takagi, 1969) 

02 ~-f / OSoOSh + i2"rr(Oh, n/ OSh )( O l~r / OSo) 

+ [ T r 2 K Z C 2 X h X ~ + i Z l r ( O 2 h ' n / O s o s h ) ] ~ = O .  (1) 

So and s h are the coordinates along the refracted and 
diffracted directions, respectively (Fig. 2), K - - l / A ,  
where h is the wavelength of the X-rays, and gh is 
the hth Fourier coefficient of the polarizability of the 
crystal. C = 1 or cos20 for o- or zr polarization, 
respectively, and 0 is the Bragg angle. 

To specify ~ completely, we must write the boun- 
dary conditions. The values of ~ ( r )  along the edges 
of the Borrmann triangle may be determined from 
the Riemann function (Takagi, 1969): 

~ ' (P)  = F ~ To(~')v(P, ~:) ~o(s ~) d~, 
BA 
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where P is a point along the exit surface of the crystal 
(Fig. 2), BA is the base of the Borrmann triangle 
along the entrance surface, Yo = cos q~0 where ~0o is 
the angle between the normal to the entrance surface 
and the So direction, v is the Riemann function and 
qb o is the amplitude of the incident wave multiplied 
by a phase factor F=- i ' n 'KCXh/ s in  20. For a point 
wave incident at point Q along BA, q~o = 
3(~:-sco)/y(~:), so that the diffracted field produced 
by such a source on the exit surface is proportional 
to v(P, Q). Along the segment PA, v = 1 for any point 
P, which means that ~ = F along QB'. Along PB, 
v(P, So, Sh) = exp {-i2zrh • [U(So, sh) - u(P)]}. This 
means that the field created by a point source at point 
Q is defined by the boundary conditions 

~Q(P)  = F along So, 

rFQ(P)=Fexp{-i2zrh.[u(P)-u(Q)]} (2) 

along Sh. 

Now let us define two new amplitudes, 1/' and q~, 
by the relations 

exp [+i2zrh .  U(So, Sh)]~ 

= F exp [+i27rh • u(s0, ShQ)]~b, (3) 

~ =  F exp { - i2z rh .  [u(s0o, Sh)-U(Q)]}~. 

From (2), it is easy to see that the boundary conditions 
qb and ~ are 

= ~ = 1  along So andsh.  

The propagation equations for • and ~ are readily 
obtained from (1): 

02aI)'/OSoOSh q" Wq, ollt/OSh q- "gg2K2C2XhXKaI t = 0 (4) 

with 

W~, = -i2¢r[(Oh- u/OSo)(So, Sh)--(Oh" u/OSo)(So, 0)] 

and 

0 2 ~/OSoOSh + W¢,O ~/OSo 

q- (Tr2K2C2XhXKq-O W~/OSo) tI) = 0 ( 5 )  

with 

Wq, = i2zr[(0h • U/OSh)(So, Sh)--(Oh " U/OSh)(O, Sh)]. 

Q A 

B' P A' 

Fig. 2. Coordinates used in the integration process. So and Sh are 
the refracted and diffracted directions. ~" is an axis along the 
entrance surface of  the crystal. 

For the numerical calculation, we use either gt or 
qb, as explained in the next section. They  give the 
same value for the intensity, since they only differ by 
a phase factor. 

I lL Numerica l  methods 

To solve the propagation equations, we divide the 
Borrmann triangle along a set of lines parallel to the 
So and Sh axes (Fig. 1). This defines a network of 
integration with steps p and q along So and Sh, respec- 
tively. To obtain a numerical formula suitable for the 
computation, we integrate the propagation equation 
over a cell in the network (Fig. 1). 

Let us first consider (4). For the first term, we may 
write 

(02~b/C3SoC3Sh) dSodSh = ~ 4 -  ~ 3 -  d/2 + ~bl , (6) 
cell 

where the subscript of qt indicates the point of the 
cell where it is calculated (Fig. 1). 

Let us now consider the third term in (4). It is easy 
to show by a Taylor-series expansion that, for a 
general function f, 

b 
I f (x )  dx~-f[(a + b)/2](b- a) 
t2 

+[(b-a)3/24]f"[(a+ b)/2]  

-~ [(b - a)/2][f(a) + f(b)] 

-[(b-a)3/12]f"[(a+b)/2]. (7) 

Thus, we may write 

up" dsodsh=(pq/4)(aF4+ 1/.¢3- ~- 1/)'2-~t- 1/,rl) 
cell 

_ (p3 q~ 12)(02 ~ / Osg) M 

--(pq3/12)(O2~/OS2h)M. (8) 

Here, M means the centre of the integration cell 
(Fig. 1). 

To integrate the second term of (4), we use the first 
form of (7) along So and Sh, 

W~(oatt/OSh) dsodSh 
cell 

~-- pq( Wv, O ~/OSh) M 

+ (paq/E4)(O2/0S2)( W~ogt/OSh)M 

+ (pqa/24)(O2/OS2)( W~,O~/OSh)M. 

To express O~/OSh as a function of the values of 
at the vertices of the cell, we use the approximation 

f'(x)~- {f[x + ( b - a ) / 2 ] - f [ x - ( b - a ) / 2 ] } / ( b - a )  

-[(b-a)2/24]f"(x) .  
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Thus, 

I W~t"(Orff/aSh) dsodsh 
cell 

= ( p / 2 )  W ~ ( M ) (  1/~4-1- 1/-'¢ 3 - 1//' 2 - 1/1"1) 

+ (p3q/8)[~(o2/as~,)( w~.a~/os,) . . ,  

- (  w~.a3~/as~.ash)M] 

+ (pq3/24)[(a 2 W~/as2)(a~/aSh) 

+ 2(a W~/aSh)(a2~/aS2h)]M. (9) 

Substituting (6), (8) and (9) into (4), we finally obtain 

[ 1 + (p/2) W~(M)  + (pq/4)G]aF4 

= ~3 + ~ 2 -  (p/2) W~,(M)(gt3 - ~ 2 -  g t )  

-(pq/4)G(Vff3 + q"2 + ~ l )+e~,  (10) 

where 

G = 71"2K2C2XhX~ 

~ = - (p~ q/ 8 )[~( a:/ as~)( w~a ~,/a~) 

- W ~ , a 3 ~ / a 4 a ~ - ~ ( a ~ e / a 4 ) G ] M  

_ (pq3/12)[½(02 W~/OsE)(o~/OSh) 

+ (o w~, /osh - G ) ( o ~ / o s ~ ) ] , , , .  

From (5), it is possible to calculate ¢ in a similar 
way, 

[ 1 + (p/2) Wa,(So, Sh,,) + (pq/4) G] ¢4 

= ¢3 + ¢ 2 -  ¢ , - ( p q / 4 ) G ( ¢ 3  + ¢2 + ¢,)  

- ( q~ 2) We(so, Sh,,)( ¢2 + ¢1) 

+(q/2)  W,,(So--p, sh , . ) (¢3+¢, )+S, ,  (11) 
with 

ca, = (p3q/12)G(O2¢/Os2)M 

+(q3/8)A( W•O2¢/Os 2 -~0' 2 We/aSh2 

+ 2GO2¢/OS2h). (12) 

Here, A(X) = X(so, Sh,,)--X(so--p, Shin) and Sh,, = 
Sh -- q/2. 

Equations (10) and (11) may be written in a form 
that minimizes the number of arithmetic operations. 
By a suitable factorization, we find 

~4 = [(Q~, - ( ~ ) ~ 3 -  ( O e  + G ) ( ~ 2  + I/s,) 

+ qJ2 + ~2]/( Q$ + (~), (13) 

¢4=[(O$-G)¢2+(Oa + G)( ¢3+ ¢,) 

- ¢ , -  ¢ , ] / (Q¢ ,  + (~), (14) 

with 
Q~, = 1 -  (p/2) W~(M)  

Q ¢ =  1 + (q/E) Wv(so, Sh,,) 

1~ = (Pq / 4 ) "a'2 K2 C2 )(hX a 

Q~ -- 1 + (q/2) W~,(so-p, Sh,,). 

To compute the field at any point in the network, 
one has to perform one complex division, two multi- 
plications and seven additions or subtractions. By an 
appropriate manipulation of the Tournarie formula, 
it can be shown that this method needs two divisions, 
six multiplications and five addition or subtractions. 
Thus, the new method is much faster. From now on 
we will refer to (13) and (14) as the gt and the ¢ 
methods, respectively. 

IV. Error-convergence analysis 

Some insight into the behaviour of these two numeri- 
cal methods may be gained from their error terms. 
The coefficient ofp3q in the expression for ca, is much 
simpler than that in the expression for e~,. The former 
does not depend explicitly on the deformation and 
contains the second derivative of ¢,  while the latter 
contains third-order derivatives of h .  u and ~. In 
strongly deformed regions, the amplitudes ~ and ¢ 
vary rapidly, so that their successive derivatives 
increase in magnitude. We may expect the coefficient 
of p3q in s~, to be larger than that of ca,. This means 
that (13) (the ~ method) is more sensitive to the 
size of the step p than (14) (the ¢ method), since 
p3q depends mostly on p. This is confirmed by our 
simulations. 

Fig. 3 presents the geometry of a dislocation in 
quartz that we have used as a test. It was also studied 
by Epelboin & Patel (1982) and we know that the 
quality of this image is very sensitive to the accuracy 
of the simulation. This is due to the large magnitude 
of the stress field around the dislocation. Fig. 4 pre- 
sents the simulation of this dislocation in a section 
topograph. In Fig. 4(c), it has been computed with 
the Tournarie method and use of the network estab- 
lished by Epelboin (1981): the values o fp  and q vary 
inside the Borrmann fan according to the position of 
the extinction fringes in the corresponding perfect 
crystal. The sampling of the nodes follows as closely 
as possible the variation of the amplitude: there are 

A,'.£, 
I X . r  

So d S h 

Fig. 3. Geometry of the dislocation simulated in the section topo- 
graph in Fig. 4 (Epelboin & Patel, 1982). The dislocation D lies 
parallel to the surface, d indicates the position of the direct 
image. 
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more nodes near  the edges, where the ampl i tude  
varies rapidly.  This network is called the ' s tandard  
network' .  In Figs. 4(a)  and  (b), we use the same 
network of  integration but  with the ~ and @ methods,  
respectively. Figs. 4(b)  and (c) are similar,  except in 
the dynamica l  image, which is seen most clearly in 
Fig. 4(b). This is in closest agreement  with the experi- 
ment.  When using the 1// method,  an error appears  
clearly in Fig. 4(a)  as a black horizontal  contrast in 
the region where a direct image exists. It arises from 
the areas where the dislocat ion is close to the transmit-  
ted beam (marked D in Fig. 3). In Fig. 5, the same 

image is computed  using a s tandard network where 
the steps of  integrat ion have been decreased by a 
factor 8 and thus the computa t ion  time is about  64 
times longer. The • and  1// methods give the same 
image and the results are in very good agreement  with 
the exper iment  but the computa t ion  times are not 
acceptable.  From Fig. 4, we may conclude that, to a 
l imited precision,  the • method  behaves roughly like 
the Tournar ie  method.  

.J 

(a) 

(a) 

(b) 

(b) 

(c) 

Fig. 4. Simulation of a dislocation in quartz. Geometry shown in 
Fig. 3. Ag Ka, 01.1 reflection (Epelboin & Patel, 1982). (a) 
method, (b) • method, (c) Tournarie method. 

(c) 

Fig. 5. Same as Fig. 4, except the steps of integration are eight 
times smaller. (a) ~F method, (b) • method, (c) experimental 
image. 
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The error  term for the diffracted field in the Tour- 
narie me thod  is 

6~, = fr2K2C2xh)(a(pS q/24)(O2Th/OS2) 

+ ( q3/ 8 )[ - 2  i~K  Cx ga2 To/ OS2 

+~02( WTh)/Os 2 + WO2Th/as2], 

where To and Th are the refracted and  diffracted 
ampli tudes .  We note that  it resembles the error  
expressed in (12). We may  then expect  that  the 
method  behaves  similarly to the Tournar ie  method,  
as seen in Figs. 4(b)  and  (c). 

Let us now consider  the second part  of  the error  
terms. The coefficient o f p q  3 in eq, includes th i rd-order  
~erivatives of  h • u. At first sight, this is also the case 
for the coefficient of  q3 in ca, but A means  that  the 
coefficient is the difference between the terms in the 
parentheses  calculated at two points separa ted  by a 
distance p. In the case of  a dislocation,  the higher  
derivatives of  W are la rge  in a small region near  the 
core since W-"  1/r, r being the dis tance f rom the 
computed  point  to the core. When the steps are not 
too small,  the sampl ing o f  the nodes may  avoid the 
core .and these h igher -order  terms will remain  small 
enough so that  the error  is acceptable.  However ,  this 
may  no longer be the case for  a denser  network.  When 
the steps p are small,  we may  use the approx ima-  
tion A ( X ) ~-- pOX / Oso, thus,  four th-order  derivatives 
appea r  in the coefficient o f  pq3, which becomes large. 
We may conclude that  the • method  tends to give 
better results for a modera te ly  dense ne twork  but  may  

(a) 

Sh 
(b) 

Fig. 6. Schematic drawing of a refined network of integration in 
the case of a dislocation. (a) The steps p and q are made smaller 
in the areas where the dislocation intersects the transmitted 
beam, thus the density of nodes is larger in the directions 
corresponding to the propagation of the corresponding beam 
(Epelboin, 1981). (b) The dashed lines show the refined region 
in a given incidence plane. The solid lines show the limits where 
the refinement is used. 

have a non-un i fo rm convergence and may give worse 
results than  the qt method  for a more refined network 
in the case of  localized deformat ions  such as disloca- 
tions. The Tournar ie  me thod  should be less sensitive 
because there is no A term in the error  expression.  
However ,  when the network is not too dense,  we may  
expect  the • method  to be more precise than the 
Tournar ie  method.  This is confirmed in the simula- 
tions in Fig. 4. 

Fig. 7 is the s imulat ion of  the same dislocation but  
using a refined network of  integration, as d rawn in 
Fig. 6. In this case, the integration steps are small in 
the vicinity of  the core of  the defect and e,~ may  
become large at the nodes  near  the core where the 
ampl i tude  is computed .  The image in Fig. 7 (a )  is 
better than  that  in Fig. 7(b),  showing that  the qt 
method  gives better  results when decreasing the step 
size than the q~ method.  Compar ing  these images 
with those in Fig. 4, we see that the qb method  does 
not converge uni formly  with a reduction of  the step 
size while the qt me thod  does. This confirms our  
theoretical  explanat ion .  

The error  terms are an est imation of  the local error,  
which appears  when going f rom one point  of  the 
network to the next. Unfor tuna te ly ,  it is not possible 
to evaluate it at each step of  the calculat ion to check 
if the integrat ion step is small enough.  This is some- 
times used for o rd inary  differential equat ions but in 

(a) 

(b) 

Fig. 7. Same dislocation as in Fig. 5 but using a refined network 
where the direct image originates. (a) qt method, (b) 
method. 
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the present case it would slow down the computation 
time and this is not acceptable. Furthermore, the local 
errors give a qualitative comprehension of the 
behaviour of the method but it is not possible to 
predict quantitatively the propagation of the total 
error during the integration, especially.for hyperbolic 
equations such as (4) and (5). It is necessary to test 
the adequacy of the network through simulations for 
each physical problem, i.e. for any kind of material, 
deformation and reflection. 

V. Simulation of section topographs 

The basic principle of the 's tandard network' intro- 
duced by Epelboin (1981) is that the sampling of the 
nodes in the integration network is calculated and 
follows, as closely as possible, the variations of the 
amplitude in the Borrmann fan: there are more nodes 
near the edges where the amplitude varies rapidly 
and also, optionally (the 'refined network'),  in the 
areas where the defect intersects the So direction, i.e. 
where the direct image originates. 

From the previous discussion, we may assume that 
the qt method gives satisfactory results everywhere 
except in a well defined area between the direct image 
and the transmitted beam (Fig. 4a). In this region, 
the integration steps must be reduced to obtain a 
satisfactory image (Fig. 7a). Therefore, a refined 
network (Fig. 6) must be used, which means that the 
computation time is increased. The • method is less 
sensitive to the step size but does not give the same 
quality as the gt method between the direct image 
and the diffracted beam and has a nonuniform con- 
vergence, which is a problem when one wants to 
increase the precision of the calculation. 

The building of the refined part of the network as 
shown in Fig. 6 is specific to a dislocation, so we have 
tried to establish a method of computation valid for 
any kind of deformation. Since in the most deformed 
areas the coupling between the refracted and reflected 
beams is weak, they propagate nearly independently.  
We have therefore assumed that the most deformed 
areas behave like an amorphous material but this 
leads to very poor images. 

It is clear that the qt and • methods present 
complementary features. We have found that the best 
solution is to use both to calculate an image. In the 
lines where the qt method is not satisfactory, we use 
it only for the nodes between the direct image and 
the diffracted beam and use the • method for the 
other nodes. The switching between the two methods 
is made automatically using the criterion of validity 
of the geometrical optics (Balibar, 1969): since the 
error depends on the value of the deformation near 
the transmitted direction So, which is related to the 
amount of newly created wavefields, we compare 
O2h • u/OSoOS h to 7r2K2C2XhXK to decide where to 
switch between the two methods. This gives a very 

Fig. 8. Same dislocation as in Fig. 5 but using an automatic 
switching between the • and ~ methods. 

(a) 

(b) 

Fig. 9. Simulation of a dislocation in silicon, Mo Ka, 220 reflection. 
Compare this simulation with the result from using the Tournarie 
method given by Epelboin (1981). (a) Experimental image, 
(b) simulation. 
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satisfactory image (Fig. 8). An example of a disloca- 
tion in silicon is shown in Fig. 9. 

This automatic switching cannot be used for exten- 
ded defects, since it is not possible to establish a 
refined network as shown in Fig. 6: the defect inter- 
sects the transmitted beam in all planes of incidence 
and one must rebuild a different refined network for 
each incidence plane. The best method is to use the 

method for the nodes between the direct image 
and Sh and the ~ method near So. The only difficulty 
is that one must switch between the integration for- 
mulae (13) and (14). This means, as indicated in (3), 
that one must change the phase of the wave in the 
middle of the integration process. This may be rather 
delicate since the phase between two adjacent nodes 
in the integration network may vary more rapidly 
than the modulus of the amplitudes. This means that 
one must be very careful about the length of the steps 
of integration. No general values can be given since 
it depends on the kind of material and deformation 
and only a trial-and-error method maybe used. We 
have used this method to simulate the images of 
quartz piezoelectric resonators and we found after 
many tests that the step sizes could be used for all 
the simulations independently from the diffraction 
parameters (Carvalho, 1990). 

Concluding remarks 

In the present paper, we describe a new numerical 
algorithm to integrate Takagi-Taupin equations when 
the incident wave is not a plane wave. We have been 
able to estimate the error term and minimize it by 
using two different forms of the equations in the 
numerical computation. This new method presents 
two advantages. 

(i) It is more accurate than the usual Tournarie 
method. As we will show in our next paper (Carvalho 

& Epelboin, 1993), it allows use of the theorem of 
reciprocity to simulate traverse and synchrotron topo- 
graphs, which has not been possible before. There 
are many advantages to this, which will be explained 
in this paper. 

(ii) It is faster since it needs less operations. The 
computing time is halved. It is now possible to com- 
pute section topographs on a good modern microcom- 
puter. An image may be calculated in a few minutes 
and requires only a modest-size memory. 

This method enables the simulation of section and 
traverse topographs to cover extended defects since 
now the simulation of the direct image is much more 
satisfactory. 

CAMC acknowledges a doctorate scholarship from 
CNPq, Brazil. 
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Abstract 

A new demonstration of the reciprocity theorem of 
optics in the case of the X-ray dynamical theory is 
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given. It is applied to the simulation of traverse and 
white-beam synchrotron topographs. It is shown that 
the accuracy of a new numerical algorithm [Carvalho 
& Epelboin (1993). Acta Cryst. A49, 460-467] allows 
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